
7 essential PyPI libraries
and how to use them

Opensource.com

https://opensource.com/

Opensource.com .

2	 7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com

About Opensource.com

What is Opensource.com?

Opensource.com publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: https://opensource.com/story

Email us: open@opensource.com

About Opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.Opensource.com
http://www.Opensource.com
https://www.Opensource.com
http://www.Opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=Story%20Proposal
http://www.Opensource.com

. ABOUT THE AUTHOR

7 ESSENTIAL PYPI LIBRARIES AND HOW TO USE THEM ... CC BY-SA 4.0 ... OPENSOURCE.COM	 3

MOSHE ZADKA

MOSHE HAS BEEN INVOLVED IN THE LINUX COMMUNITY
since 1998, helping

in Linux “installation parties”. He has been programming Python since 1999, and
has contributed to the core Python interpreter. Moshe has been a DevOps/SRE
since before those terms existed, caring deeply
about software reliability, build reproducibility and
other such things. He has worked in companies
as small as three people and as big as tens of
thousands — usually some place around where
software meets system administration.

FOLLOW MOSHE ZADKA

Twitter:	 https://twitter.com/moshezadka

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://twitter.com/moshezadka

Contents . . .

4	 7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com

Introduction

Chapters

Get Involved | Additional Resources

Introduction 	 5

Write faster C extensions for Python with Cython 	 6
Format Python however you like with Black	 7
Say goodbye to boilerplate in Python with attrs	 8
Add methods retroactively in Python with singledispatch	 9
Automate your Python code tests with tox	 10
Ensure consistency in your Python code with flake8	 12
Check type annotations in Python with mypy	 13

Write for Us 	 15

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. Introduction

7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com	 5

Python is one of the most popular programming languages in use
today—and for good reasons: it's open source, it has

a wide range of uses (such as web programming, business applications,
games, scientific programming, and much more), and it has a vibrant
and dedicated community supporting it. This community is the reason we
have such a large, diverse range of software packages available in the
Python Package Index (PyPI) to extend and improve Python and solve
the inevitable glitches that crop up.

In this series, we'll look at seven PyPI libraries that can help you solve
common Python problems.

Introduction

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

6	 7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com

Write faster C extensions for Python with Cython . . .

Python is fun to use, but sometimes,
programs written in it

can be slow. All the runtime dynamic dispatching comes
with a steep price: sometimes it’s up to 10-times slower
than equivalent code written in a systems language like
C or Rust.

Moving pieces of code to a completely new language can
have a big cost in both effort and reliability: All that manual
rewrite work will inevitably introduce bugs. Can we have our
cake and eat it too?

To have something to optimize for this exercise, we need
something slow. What can be slower than an accidentally
exponential implementation of the Fibonacci sequence?

def fib(n):

 if n < 2:

 return 1

 return fib(n-1) + fib(n-2)

Since a call to fib results in two calls, this beautifully ineffi-
cient algorithm takes a long time to execute. For example,
on my new laptop, fib(36) takes about 4.5 seconds. These
4.5 seconds will be our baseline as we explore how Python’s
Cython extension [1] can help.

The proper way to use Cython is to integrate it into setup.
py. However, a quick and easy way to try things out is with
pyximport. Let’s put the fib code above in fib.pyx and run
it using Cython.

>>> import pyximport; pyximport.install()

>>> import fib

>>> fib.fib(36)

Just using Cython with no code changes reduced the time
the algorithm takes on my laptop to around 2.5 seconds.
That’s a reduction of almost 50% runtime with almost no ef-
fort; certainly, a scrumptious cake to eat and have!

Putting in a little more effort, we can make things even
faster.

cpdef int fib(int n):

 if n < 2:

 return 1

 return fib(n - 1) + fib(n - 2)

We moved the code in fib to a function defined with cpdef
and added a couple of type annotations: it takes an integer
and returns an integer.

This makes it much faster—around 0.05 seconds. It’s so
fast that I may start suspecting my measurement methods
contain noise: previously, this noise was lost in the signal.

So, the next time some of your Python code spends too
long on the CPU, maybe spinning up some fans in the pro-
cess, why not see if Cython can fix things?

Links
[1]	� https://pypi.org/project/Cython/

Write faster C extensions
for Python with Cython
Cython is a language that simplifies writing C extensions for Python.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://pypi.org/project/Cython/
https://pypi.org/project/Cython/

7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com	 7

. Format Python however you like with Black

Sometimes creativity can be a
wonderful

thing. Sometimes it is just a pain. I enjoy solving hard prob-
lems creatively, but I want my Python formatted as con-
sistently as possible. Nobody has ever been impressed by
code that uses “interesting” indentation.

But even worse than inconsistent formatting is a code
review that consists of nothing but formatting nits. It is an-
noying to the reviewer—and even more annoying to the
person whose code is reviewed. It’s also infuriating when
your linter tells you that your code is indented incorrectly,
but gives no hint about the correct amount of indentation.

Enter Black [1]. Instead of telling you what to do, Black is a
good, industrious robot: it will fix your code for you.

To see how it works, feel free to write something beautiful-
ly inconsistent like:

def add(a, b): return a+b

def mult(a, b):

 return \

 a * b

Does Black complain? Goodness no, it just fixes it for you!

$ black math

reformatted math

All done!
1 file reformatted.

$ cat math

def add(a, b):

 return a + b

def mult(a, b):

 return a * b

Black does offer the option of failing instead of fixing and
even outputting a diff-style edit. These options are great
in a continuous integration (CI) system that enforces run-
ning Black locally. In addition, if the diff output is logged
to the CI output, you can directly paste it into patch in the
rare case that you need to fix your output but cannot install
Black locally.

$ black --check --diff bad

--- math 2019-04-09 17:24:22.747815 +0000

+++ math 2019-04-09 17:26:04.269451 +0000

@@ -1,7 +1,7 @@

-def add(a, b): return a + b

+def add(a, b):

+ return a + b

 def mult(a, b):

- return \

- a * b

+ return a * b

would reformat math

All done!
1 file would be reformatted.

$ echo $?

1

Links
[1] https://pypi.org/project/black/

Format Python however
you like with Black
Black formats your Python code consistently for you.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://pypi.org/project/black/
https://pypi.org/project/black/

8	 7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com

Say goodbye to boilerplate in Python with attrs . . .

If you have been using Python for any length of time, you
are probably used to writing code like:

class Book(object):

 def __init__(self, isbn, name, author):

 self.isbn = isbn

 self.name = name

 self.author = author

Then you write a __repr__ function; otherwise, it would be
hard to log instances of Book:

 def __repr__(self):

 return f"Book({self.isbn}, {self.name}, {self.author})"

Next, you write a nice docstring documenting the expected
types. But you notice you forgot to add the edition and
published_year attributes, so you have to modify them in
five places.

What if you didn’t have to?

@attr.s(auto_attribs=True)

class Book(object):

 isbn: str

 name: str

 author: str

 published_year: int

 edition: int

Annotating the attributes with types using the new type anno-
tation syntax, attrs [1] detects the annotations and creates a
class.

ISBNs have a specific format. What if we want to enforce
that format?

@attr.s(auto_attribs=True)

class Book(object):

 isbn: str = attr.ib()

 @isbn.validator

 def pattern_match(self, attribute, value):

 m = re.match(r"^(\d{3}-)\d{1,3}-\d{2,3}-\d{1,7}-\d$", value)

 if not m:

 raise ValueError("incorrect format for isbn", value)

 name: str

 author: str

 published_year: int

 edition: int

The attrs library also has great support for immutability-style
programming [2]. Changing the first line to @attr.s(auto_at-
tribs=True, frozen=True) means that Book is now im-
mutable: trying to modify an attribute will raise an exception.
Instead, we can get a new instance with modification using
attr.evolve(old_book, published_year=old_book.pub-
lished_year+1), for example, if we need to push publication
forward by a year.

Links
[1]	 https://pypi.org/project/attrs/
[2]	� https://opensource.com/article/18/10/functional-

programming-python-immutable-data-structures

Say goodbye to boilerplate
in Python with attrs
attrs is a Python package that helps you write concise, correct code quickly.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://pypi.org/project/attrs/
https://pypi.org/project/attrs/
https://opensource.com/article/18/10/functional-programming-python-immutable-data-structures
https://opensource.com/article/18/10/functional-programming-python-immutable-data-structures

7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com	 9

. Add methods retroactively in Python with singledispatch

Imagine you have a “shapes” library with a Cir-
cle class, a Square class, etc.

A Circle has a radius, a Square has a side, and a Rect-
angle has height and width. Our library already exists; we
do not want to change it.

However, we do want to add an area calculation to our
library. If we didn’t share this library with anyone else, we
could just add an area method so we could call shape.area()
and not worry about what the shape is.

While it is possible to reach into a class and add a method,
this is a bad idea: nobody expects their class to grow new
methods, and things might break in weird ways.

Instead, the singledispatch [1] function in functools can
come to our rescue.

@singledispatch

def get_area(shape):

 raise NotImplementedError("cannot calculate area for

 unknown shape", shape)

The “base” implementation for the get_area function fails.
This makes sure that if we get a new shape, we will fail
cleanly instead of returning a nonsense result.

@get_area.register(Square)

def _get_area_square(shape):

 return shape.side ** 2

@get_area.register(Circle)

def _get_area_circle(shape):

 return math.pi * (shape.radius ** 2)

One nice thing about doing things this way is that if some-
one writes a new shape that is intended to play well with our
code, they can implement get_area themselves.
from area_calculator import get_area

@attr.s(auto_attribs=True, frozen=True)

class Ellipse:

 horizontal_axis: float

 vertical_axis: float

@get_area.register(Ellipse)

def _get_area_ellipse(shape):

 return math.pi * shape.horizontal_axis * shape.vertical_axis

Calling get_area is straightforward.

print(get_area(shape))

This means we can change a function that has a long if
isintance()/elif isinstance() chain to work this way, without
changing the interface. The next time you are tempted to
check if isinstance, try using singledispatch!

Links
[1]	� https://pypi.org/project/singledispatch/

Add methods retroactively in
Python with singledispatch
singledispatch is a library that allows you to add methods to Python libraries retroactively.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://pypi.org/project/singledispatch/
https://pypi.org/project/singledispatch/

10	 7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com

Automate your Python code tests with tox . . .

When writing Python code, it is good to
have automated checks.

While you could dump the rules for running the checks di-
rectly into the continuous integration (CI) environment, that’s
seldom the best place for it. Among other things, it is useful
to run tests locally, using the same parameters the CI runs,
to save CI time..

The tox project [1] is designed to run different checks
against different versions of Python and against different
versions of dependencies. Very quickly, we find the limiting
factor is not the flexibility of tox but the harsh realities of the
combinatorial explosions of options!

For example, a simple tox configuration can run the same
tests against several versions of Python.

[tox]

envlist = py36,py37

[testenv]

deps =

 pytest

commands =

 pytest mylibrary

Tox will automatically use the right version of the inter-
preter, based on the version of the environment, to create
the virtual environment. Tox will automatically rebuild the
virtual environment if it is missing or if the dependencies
change.

It is possible to explicitly indicate the Python version in an
environment.

[tox]

envlist = py36,py37,docs

[testenv]

deps =

 pytest

commands =

 pytest mylibrary

[testenv:docs]

changedir = docs

deps =

 sphinx

commands =

 sphinx-build -W -b html -d {envtmpdir}/doctrees .

{envtmpdir}/html

basepython = python3.7

This example uses Sphinx [2] to build documentation for
the library. One nice thing is that the Sphinx library will be
installed only in the docs virtual environment. If mylibrary
imports on Sphinx but forgets to indicate an explicit depen-
dency, the tests will, correctly, fail.

We can also use tox to run the tests with different versions
of the dependencies.

[tox]

envlist = {py36,py37}-{minimum,current}

[testenv]

deps =

 minimum: thirdparty==1.0

 current: thirdparty

 pytest

commands =

 pytest mylibrary

This will run four different test runs: py36-minimum,
py36-current, py37-minimum, and py37-current. This is
useful in the case where our library depends on thirdparty>=​
1.0: every test run makes sure we are still compatible with the
1.0 version while also making sure the latest version does not
break us.

Automate your Python code
tests with tox
tox is a tool for automating tests on Python code.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/5/python-tox

7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com	 11

. Automate your Python code tests with tox

It is also a good idea to run a linter in tox. For example,
running Black [3] will do the right thing.

[tox]

envlist = py36,py37,py36-black

[testenv]

deps =

 pytest

commands =

 pytest mylibrary

[testenv:py36-black]

deps =

 black

commands =

 black --check --diff mylibrary

By default, tox will run all test environments. But you can run
just one environment; for example, if you only want to run
Black, run tox -e py36-black.

If you have a Python library you care about, add tox.ini to
your workflow to keep its quality high.

Links
[1]	 https://opensource.com/article/19/5/python-tox
[2]	� http://www.sphinx-doc.org/en/master/
[3]	 �https://opensource.com/article/19/5/python-black

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/5/python-tox
http://www.sphinx-doc.org/en/master/
https://opensource.com/article/19/5/python-black

12	 7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com

Python code is meant to be
e a s y

to read. For this reason, consistency matters. Consistency
inside a project matters most of all. How can we enforce
such consistency?

Flake8 is really two things: it is both a linter, enforcing
some basic rules. Even more important, it is a linting platform
that allows plugins to add or change linting rules.

The best thing about flake8 [1] plugins is that you don’t
need to do anything other than installing them in the virtual
environment where you want to run flake8.

Consider the following code:

spew.py

print("Hello world")

print("Goodbye universe")

If we install flake8 in a clean virtual environment and run it, it
will say nothing: this file looks fine.

If we install flake8-print and run flake8 spew.py, we get:

spew.py:2:1: T001 print found.

If we instead install flake8-eradicate, we get:

spew.py:1:1: E800: Found commented out code:

We can, of course, install both—and get both warnings.
You can also write local, custom plugins. If your team has

local conventions that are constantly nit-picked in reviews,
why not automate them with a custom flake8 plugin?

Links
[1]	 �https://pypi.org/project/flake8/

Ensure consistency in your
Python code with flake8
flake8 is a linter and linting platform that ensures consistency in Python code.

Ensure consistency in your Python code with flake8 . . .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://pypi.org/project/flake8/
https://pypi.org/project/flake8/

7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com	 13

. Check type annotations in Python with mypy

Python is a “dynamically typed” language. How-
ever, sometimes it is nice to let other

beings, both robotic and human, know what types are ex-
pected. Traditionally, humans have been prioritized: input
and output types of functions were described in docstrings.
MyPy [1] allows you to put the robots on equal footing, letting
them know what types are intended.

Let’s look at the following code:

def add_one(input):

 return input + 1

def print_seven():

 five = "5"

 seven = add_one(add_one(five))

 print(seven)

Calling print_seven raises a TypeError informing us we
cannot add a string and a number: we cannot add “5”
and 1.

However, we cannot know this until we run the code. Run-
ning the code, if it were correct, would have produced a print-
out to the screen: a side-effect. A relatively harmless one, as
side-effects go, but still, a side-effect. Is it possible to do it
without risking any side-effects?

We just have to let the robots know what to expect.

def add_one(input: int) -> int:

 return input + 1

def print_seven() -> None:

 five = "5"

 seven = add_one(add_one(five))

 print(seven)

We use type annotations to denote that add_one expects an
integer and returns an integer. This does not change what
the code does. However, now we can ask a safe robot to find
problems for us.

$ mypy typed.py

typed.py:6: error: �Argument 1 to "add_one" has incompatible

type "str"; expected "int"

We have a nice, readable explanation of what we are doing
wrong. Let’s fix print_seven.

def print_seven() -> None:

 five = 5

 seven = add_one(add_one(five))

 print(seven)

If we run mypy on this, there will not be any complaints; we
fixed the bug. This also results, happily, in working code.

The Python type system can get pretty deep, of course. It
is not uncommon to encounter signatures like:
from typing import Dict, List, Mapping, Sequence

def unify_results(

 results1: Mapping[str, Sequence[int]],

 results2: Mapping[str, Sequence[int]]

) -> Dict[str, List[int]]:

 pass

In those cases, remember that everything is an object: yes,
even types.

ResultsType = Mapping[str, Sequence[int]]

ConcreteResultsType = Dict[str, List[int]]

Check type annotations in
Python with mypy
mypy “a Python linter on steroids.”

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://pypi.org/project/mypy/

14	 7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com

Check type annotations in Python with mypy . . .

guarantee less in order to allow future changes to change the
return type.

MyPy allows progressive annotation: not everything has to
be annotated at once. Functions without any annotations will
not be type-checked.

Go forth and annotate!

Links
[1]	 https://pypi.org/project/mypy/

def unify_results(�results1: ResultsType, results2: ResultsType)

-> ConcreteResultsType:

 pass

We defined the input types as abstract types (using Mapping
and Sequence). This allows sending in, say, a defaultdict,
which maps strings to tuples. This is usually the right choice.
We also chose to guarantee concrete return types in the sig-
nature. This is more controversial: sometimes it is useful to

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://pypi.org/project/mypy/

. Write for Us

7 essential PyPI libraries and how to use them ... CC BY-SA 4.0 ... Opensource.com	 15

In 2010, Red Hat CEO Jim Whitehurst announced the launch of Opensource.com
in a post titled Welcome to the conversation on Opensource.com. He explained,
“This site is one of the ways in which Red Hat gives something back to the open
source community. Our desire is to create a connection point for conversations
about the broader impact that open source can have—and is having—even beyond
the software world.” he wrote, adding, “All ideas are welcome, and all participants
are welcome. This will not be a site for Red Hat, about Red Hat. Instead, this will be
a site for open source, about the future.”

By 2013, Opensource.com was publishing an average of 46 articles per month,
and in March 2016, Opensource.com surpassed 1-million page views for the first
time. In 2019, Opensource.com averages more than 1.5 million page views and
90 articles per month.

More than 60% of our content is contributed by members of open source communities,
and additional articles are written by the editorial team and other Red Hat contributors.
A small, international team of staff editors and Community Moderators work closely
with contributors to curate, polish, publish, and promote open source stories from
around the world.

Would you like to write for us? Send pitches and inquiries to open@opensource.com.

To learn more, read 7 big reasons to contribute to Opensource.com.

Write for Us

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/should-be/10/1/welcome-conversation-opensourcecom
https://opensource.com/about
https://opensource.com/opensourcecom-team
https://opensource.com/how-submit-article
mailto:open%40opensource.com?subject=
https://opensource.com/life/15/7/7-big-reasons-contribute-opensourcecom

	001-001_Cover
	002-002_About_OS
	003-003_Author
	004-004_TOC
	005-005_Intro
	006-014_Python_Articles
	015-015_Write_for_Us

